6-(2-Methylpropoxy)pyridine-3-boronic+acid
Catalog Number:
(10396-438)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10396-432)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10289-596)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(76077-914)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10396-434)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10396-436)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10396-440)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(76077-916)
Supplier:
Bioss
Description:
Functions as a polyspecific organic cation transporter, efficiently transporting many organic cations such as monoamine neurotransmitters 1-methyl-4-phenylpyridinium and biogenic amines including serotonin, dopamine, norepinephrine and epinephrine. May play a role in regulating central nervous system homeostasis of monoamine neurotransmitters. May be involved in luminal transport of organic cations in the kidney and seems to use luminal proton gradient to drive organic cation reabsorption. Does not seem to transport nucleoside and nucleoside analogs such as uridine, cytidine, thymidine, adenosine, inosine, guanosine, and azidothymidine. In (PubMed:16873718) adenosine is efficiently transported but in a fashion highly sensitive to extracellular pH, with maximal activity in the pH range 5.5 to 6.5. Glu-206 is essential for the cation selectivity and may function as the charge sensor for cationic substrates. Transport is chloride and sodium-independent but appears to be sensitive to changes in membrane potential. Weakly inhibited by the classical inhibitors of equilibrative nucleoside transport, dipyridamole, dilazep, and nitrobenzylthioinosine. May play a role in the regulation of extracellular adenosine concentrations in cardiac tissues, in particular during ischemia.
Catalog Number:
(10289-594)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(10289-592)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(10289-702)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(10289-588)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(10289-590)
Supplier:
Bioss
Description:
Excitatory Amino Acid Transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-D-aspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.
Catalog Number:
(76101-296)
Supplier:
Bioss
Description:
Uteroglobin belongs to the family of secretoglobins and is a secreted protein product of nonciliated bronchiolar Clara cells. There is convincing data suggesting it has phospholipase A2 inhibitory activity, as well as, a number of other immunomodulatory features including inhibition of interferon gamma signalling and Th1 vs. Th2 lymphocyte regulation. It was proposed as a potential peripheral marker of respiratory epithelial injury and bronchial dysfunction. Clara Cell Protein 16 concentrations have been determined in both serum and bronchoalveolar lavage fluid in numerous studies since 1994. In serum, its increase is associated with age, asbestos, nitrogen chloride and ozone exposure, sarcoidosis and high PEEP ventilation. Decreased serum CC16 levels are found after pulmonary resection, in silica-exposed workers, smokers and in asthma. Decreased CC16 concentrations were also found in the amniotic fluid of fetuses suffering from pulmonary hypoplasia caused by various mechanisms (diaphragmatic hernia, diabetic fetopathy, Turner and Down syndrome). In pleural effusions, the CC16 concentration appears to be associated with its diffusion from the lung as evidenced by high CC16 levels in cardiac pleural congestion.
Catalog Number:
(76101-294)
Supplier:
Bioss
Description:
Uteroglobin belongs to the family of secretoglobins and is a secreted protein product of nonciliated bronchiolar Clara cells. There is convincing data suggesting it has phospholipase A2 inhibitory activity, as well as, a number of other immunomodulatory features including inhibition of interferon gamma signalling and Th1 vs. Th2 lymphocyte regulation. It was proposed as a potential peripheral marker of respiratory epithelial injury and bronchial dysfunction. Clara Cell Protein 16 concentrations have been determined in both serum and bronchoalveolar lavage fluid in numerous studies since 1994. In serum, its increase is associated with age, asbestos, nitrogen chloride and ozone exposure, sarcoidosis and high PEEP ventilation. Decreased serum CC16 levels are found after pulmonary resection, in silica-exposed workers, smokers and in asthma. Decreased CC16 concentrations were also found in the amniotic fluid of fetuses suffering from pulmonary hypoplasia caused by various mechanisms (diaphragmatic hernia, diabetic fetopathy, Turner and Down syndrome). In pleural effusions, the CC16 concentration appears to be associated with its diffusion from the lung as evidenced by high CC16 levels in cardiac pleural congestion.
Catalog Number:
(10459-206)
Supplier:
Bioss
Description:
Arginine methyltransferase that can both catalyze the formation of omega-N monomethylarginine (MMA) and symmetrical dimethylarginine (sDMA), with a preference for the formation of MMA. Specifically mediates the symmetrical dimethylation of arginine residues in the small nuclear ribonucleoproteins Sm D1 (SNRPD1) and Sm D3 (SNRPD3); such methylation being required for the assembly and biogenesis of snRNP core particles. Methylates SUPT5H. Mono- and dimethylates arginine residues of myelin basic protein (MBP) in vitro. Plays a role in the assembly of snRNP core particles. May play a role in cytokine-activated transduction pathways. Negatively regulates cyclin E1 promoter activity and cellular proliferation. May regulate the SUPT5H transcriptional elongation properties. May be part of a pathway that is connected to a chloride current, possibly through cytoskeletal rearrangement. Methylates histone H2A and H4 'Arg-3' during germ cell development. Methylates histone H3 'Arg-8', which may repress transcription. Methylates the Piwi proteins (PIWIL1, PIWIL2 and PIWIL4), methylation of Piwi proteins being required for the interaction with Tudor domain-containing proteins and subsequent localization to the meiotic nuage. Methylates RPS10.
Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the
![]()
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the
![]()
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at Regulatory_Affairs@vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at 1-800-932-5000.
|
|||||||||