Keep my session open?
Ending In 
The session is expired
Your session has expired. For your security, we have logged you out.
Would you like to log in again?

Update to Avantor’s response to the coronavirus (COVID-19) pandemic

  • Product Results
  • Product Category
  • Criteria
  • Supplier
  • Refine by Suppliers
    Sort by:

  • Search Within Results

You Searched For:

Zirconium(IV)+isopropoxide+isopropanol+complex


27,385  results were found

SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-HORIZONTAL
 
 
SearchResultCount:"27385"
  List View Searching Easy View BETA(new)
Sort by:
 
 
 
 

Supplier:  Bioss
Description:   Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
Supplier:  Bioss
Description:   The product of this gene is a member of the nuclearfactors of activated T cells DNA-binding transcription complex.This complex consists of at least two components: a preexistingcytosolic component that translocates to the nucleus upon T cellreceptor (TCR) stimulation and an inducible nuclear component.Other members of this family of nuclear factors of activated Tcells also participate in the formation of this complex. Theproduct of this gene plays a role in the inducible expression ofcytokine genes in T cells, especially in the induction of the IL-2and IL-4. Alternatively spliced transcript variants encodingdifferent isoforms have been noted for this gene.
Catalog Number: (10104-048)

Supplier:  Prosci
Description:   GRPEL2 is an essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. GRPEL2 seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins. GRPEL2 stimulates ATPase activity of mt-HSP70. GRPEL2 may also serve to modulate the interconversion of oligomeric (inactive) and monomeric (active) forms of mt-HSP70.

Supplier:  Bioss
Description:   Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3.
Supplier:  Bioss
Description:   Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).
Supplier:  Bioss
Description:   Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).

Supplier:  Bioss
Description:   Essential subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (beta-amyloid precursor protein). Probably represents the last step of maturation of gamma-secretase, facilitating endoproteolysis of presenilin and conferring gamma-secretase activity.
Supplier:  Southern Biotechnology
Description:   CD3 is a member of the T cell receptor-associated CD3 complex. The monoclonal antibody CT-3 recognizes a complex of at least three polypeptides of Mr 20, 19, and 17 kDa (two of which are N-glycosylated) on chicken T cells. The antibody also coprecipitates a polypeptide of 90 kDa from digitonin solubilized T cell lysates, which can be reduced to two polypeptides of Mr 50 and 40 kDa.

Supplier:  Rockland Immunochemical
Description:   Mouse S100A9 AccuSignal ELISA Kit
Supplier:  Bioss
Description:   The nuclear pore complex protein, Ran-binding protein 2 (Ran BP-2 or Nup358), contains four Ran-binding domains. Ran BP-2 is a large scaffold cyclophilin-related protein expressed in photoreceptor cells. Ran BP-2 localization at cytoplasmic fibrils emanating from the nuclear pore complex and interaction with the Ran-GTPase support its role in nucleocytoplasmic transport processes. In humans, the Ran BP-2 gene is partially duplicated in a gene cluster and lies in a hot spot for recombination on chromosome 2q. This genetic heterogeneity renders further significance of this genomic region in human disease due to its possible involvement in genetically linked disorders such as juvenile nephronophthisis, congenital hepatic fibrosis and chorioretinal dysplasia.
Supplier:  Bioss
Description:   The nuclear pore complex protein, Ran-binding protein 2 (Ran BP-2 or Nup358), contains four Ran-binding domains. Ran BP-2 is a large scaffold cyclophilin-related protein expressed in photoreceptor cells. Ran BP-2 localization at cytoplasmic fibrils emanating from the nuclear pore complex and interaction with the Ran-GTPase support its role in nucleocytoplasmic transport processes. In humans, the Ran BP-2 gene is partially duplicated in a gene cluster and lies in a hot spot for recombination on chromosome 2q. This genetic heterogeneity renders further significance of this genomic region in human disease due to its possible involvement in genetically linked disorders such as juvenile nephronophthisis, congenital hepatic fibrosis and chorioretinal dysplasia.
Catalog Number: (10281-602)

Supplier:  Bioss
Description:   Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, the type-2 receptors act as a primary activin receptors (binds activin-A/INHBA, activin-B/INHBB as well as inhibin-A/INHA-INHBA). The type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor.
Supplier:  Bioss
Description:   Transmembrane serine/threonine kinase activin type-2 receptor forming an activin receptor complex with activin type-1 serine/threonine kinase receptors (ACVR1, ACVR1B or ACVR1c). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, the type-2 receptors act as a primary activin receptors (binds activin-A/INHBA, activin-B/INHBB as well as inhibin-A/INHA-INHBA). The type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor.
Supplier:  Bioss
Description:   Transmembrane serine/threonine kinase activin type-1 receptor forming an activin receptor complex with activin receptor type-2 (ACVR2A or ACVR2B). Transduces the activin signal from the cell surface to the cytoplasm and is thus regulating a many physiological and pathological processes including neuronal differentiation and neuronal survival, hair follicle development and cycling, FSH production by the pituitary gland, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. Activin is also thought to have a paracrine or autocrine role in follicular development in the ovary. Within the receptor complex, type-2 receptors (ACVR2A and/or ACVR2B) act as a primary activin receptors whereas the type-1 receptors like ACVR1B act as downstream transducers of activin signals. Activin binds to type-2 receptor at the plasma membrane and activates its serine-threonine kinase. The activated receptor type-2 then phosphorylates and activates the type-1 receptor such as ACVR1B. Once activated, the type-1 receptor binds and phosphorylates the SMAD proteins SMAD2 and SMAD3, on serine residues of the C-terminal tail. Soon after their association with the activin receptor and subsequent phosphorylation, SMAD2 and SMAD3 are released into the cytoplasm where they interact with the common partner SMAD4. This SMAD complex translocates into the nucleus where it mediates activin-induced transcription. Inhibitory SMAD7, which is recruited to ACVR1B through FKBP1A, can prevent the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. Activin signal transduction is also antagonized by the binding to the receptor of inhibin-B via the IGSF1 inhibin coreceptor. ACVR1B also phosphorylates TDP2.
Supplier:  Novus Biologicals
Description:   The Apolipoprotein A-I / ApoA1 Antibody (2083D) [PerCP] from Novus Biologicals is a rabbit monoclonal antibody to Apolipoprotein A-I / ApoA1. This antibody reacts with human. The Apolipoprotein A-I / ApoA1 Antibody (2083D) [PerCP] has been validated for the following applications: Flow Cytometry.

Supplier:  Bioss
Description:   HCAP G is a subunit of the condensin complex, which is responsible for the condensation and stabilization of chromosomes during mitosis and meiosis. Phosphorylation of the encoded protein activates the condensin complex. There are pseudogenes for this gene on chromosomes 8 and 15. Alternative splicing results in multiple transcript variants.
Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at Regulatory_Affairs@vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at 1-800-932-5000.
6,577 - 6,592  of 27,385