Keep my session open?
Ending In 
The session is expired
Your session has expired. For your security, we have logged you out.
Would you like to log in again?

Update to Avantor’s response to the coronavirus (COVID-19) pandemic

  • Product Results
  • Product Category
  • Criteria
  • Supplier
  • Refine by Suppliers
    Sort by:

  • Search Within Results

You Searched For:

2-[(Tetrahydro-2H-pyran-4-ylcarbonyl)amino]acetic+acid


138,529  results were found

SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-SearchPresentationType-HORIZONTAL
 
 
SearchResultCount:"138529"
  List View Searching Easy View BETA(new)
Sort by:
 
 
 
 

Catalog Number: (ALB122471-5G)

Supplier:  ALADDIN SCIENTIFIC
Description:   4-BROMO-26-DIFLUOROANILINE 67567-26-4 5G
New Product
Supplier:  AMBEED, INC
Description:   4-(2,3-Dimethylphenylcarbamoyl)phenylboronic acid, Purity: 98%, CAS Number: 913835-36-6, Appearance: Solid, Storage: Inert atmosphere, Room Temperature, Size: 1G
Supplier:  AMBEED, INC
Description:   3',5'-Dimethyl-2'-hydroxyacetophenone, Purity: 98%, CAS Number: 1198-66-9, Appearance: White to Orange to Green powder to crystal, Storage: Inert atmosphere, Room Temperature, Size: 100g
Supplier:  Enzo Life Sciences
Description:   The polyclonal antibody to Csn6 was generated by immunisation of rabbits with a synthetic peptide corresponding to residues [283-297] of the human Csn6 sequence. The antibody has been characterised by one-dimensional Western blotting. Vial contains a partially purified immunoglobulin preparation suspended phosphate-buffered saline containing 0.01M sodium azide.  The COP9 signalosome, once defined as a repressor complex of light activated development in Arabidopsis, has recently been found in humans and is probably present in most multicellular organisms. The COP9 signalosome is closely related to the lid sub-complex of the 26S proteasome in structural composition and probably shares a common evolutionary ancestor. A multifaceted role of the COP9 signalosome in cell-signalling processes is hinted at by its associated novel kinase activity, as well as the involvement of its subunits in regulating multiple cell-signalling pathways and cell-cycle progression. The molecular genetic studies in Arabidopsis suggest that the complex functions as part of a highly conserved regulatory network, whose physiological rüle in animals has yet to be determined. The COP9 signalosome, also known as the the COP9 complex and JAB1-containing signalosome, is a conserved nuclear protein complex found in plants and animals. It is composed of eight distinct subunits, designated S1 to S8 (very recently re-designated Csn1-Csn8) according to the molecular weight of the mammalian complex subunits. Subunit composition and the subunit sequences are substantially conserved between the mammalian and the plant complexes, implying that the complex has a conserved cellular function in higher eukaryotic organisms. The role and function of Csn6 has yet to be determined although this subunit is known to interact with subunits Csn2 and Csn7 within the COP9 signalosome.
Catalog Number: (75788-974)

Supplier:  Prosci
Description:   Interleukin-20 (IL-20) is a member of the IL-10 family of regulatory cytokines that includes IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. Members of this family share partial homology in their amino acid sequences but they are dissimilar in their biological functions. IL-20 exhibits approximately 28% amino acid identity with IL-10 and 76% amino acid identity with mouse IL-20. There are two heterodimeric receptor complexes for IL-20. The first is composed of IL-20 R alpha and IL-20 R beta . The second is composed of IL-22 R and IL-20 R beta . Whereas the IL-22 R/IL-20 R beta complex is shared with IL-24, the IL-20 R alpha/IL-20 R beta complex is shared with both IL-19 and IL-24. IL-20 has been shown to initiate transduction cascades involving STAT3 and stimulates the induction of pro-inflammatory genes including TNF- alpha and MCP-1. Initial functional studies using transgenic mice suggest that IL-20 has the ability to regulate skin development. The over-expression of both human and mouse forms of IL-20 results in keratinocyte hyper-proliferation, abnormal epidermal differentiation, and neonatal lethality. In humans, IL-20 and its receptors are up-regulated in psoriatic skin, and polymorphisms in the IL-20 gene have been associated with plaque-type psoriasis. IL-20 may also have a role in hematopoiesis. It enhances the proliferation of multi-potential progenitors in vitro and increases their numbers and cell cycling status in IL-20 transgenic mice. IL-20 is also shown to suppress COX-2 and PGE2 and acts as an inhibitor of angiogenesis in model systems.
Supplier:  TCI America
Description:   CAS Number: 69891-38-9
MDL Number: MFCD00059308
Molecular Formula: C17H17NO2
Molecular Weight: 267.33
Purity/Analysis Method: >98.0% (HPLC,N)
Form: Crystal
Melting point (°C): 152
MSDS SDS
Catalog Number: (89367-402)

Supplier:  Genetex
Description:   The membrane-bound adenylyl cyclases (ACs) represent one of the major families of effector enzymes for G protein-coupled receptors (GPCRs). Using the high inter-species homology of mammalian AC isoforms, nine Adenylyl cyclase (AC) isoforms, encoded by separate genes, have been identified until today. Human adenylate cyclase genes comprise of 11 to 26 exons, which are distributed over 16 to 430kb. The expression profile of these 9 AC isoforms in a panel of 16 human tissues and in human embryonic kidney (HEK) cells have been demonstrated earlier. The cAMP synthesizing enzymes are found in two forms: cytosolic (soluble) and membrane-bound (particulate). Stimulation of adenylate cyclases produce cAMP form ATP in response to the activation of GPCRs by various hormones, neurotransmitters and other regulatory molecules. cAMP, in subsequent steps down the signal transduction pathway, can stimulate cAMP-dependent protein kinase A (cPKA), and several other target molecules. Activation of cPKA can phosphorylate a broad range of substrates that regulate various metabolic pathways, gene expression, and affect memory functions etc. The stimulation of adenylate cyclases starts with interactions with GPCRs mediated signals initiated by Gs and Gi heterotrimeric G-proteins. The interaction of GPCR agonist (eg. Interaction of isopreternol to beta2 receptors) catalyses the exchange of GDP to GTP that is bound to G proteins. The GTP binding reduces the affinity of Gs'N to other GTP binding proteins and Gs-GTP complex stimulate the adenylate cyclase. In last several years, new members of particulate and soluble adenylate cyclase family have been identified and significant progress is made in understanding of the molecular mechanisms that underlie the regulation of these families of enzymes.
Catalog Number: (89367-398)

Supplier:  Genetex
Description:   The membrane-bound adenylyl cyclases (ACs) represent one of the major families of effector enzymes for G protein-coupled receptors (GPCRs). Using the high inter-species homology of mammalian AC isoforms, nine Adenylyl cyclase (AC) isoforms, encoded by separate genes, have been identified until today. Human adenylate cyclase genes comprise of 11 to 26 exons, which are distributed over 16 to 430kb. The expression profile of these 9 AC isoforms in a panel of 16 human tissues and in human embryonic kidney (HEK) cells have been demonstrated earlier. The cAMP synthesizing enzymes are found in two forms: cytosolic (soluble) and membrane-bound (particulate). Stimulation of adenylate cyclases produce cAMP form ATP in response to the activation of GPCRs by various hormones, neurotransmitters and other regulatory molecules. cAMP, in subsequent steps down the signal transduction pathway, can stimulate cAMP-dependent protein kinase A (cPKA), and several other target molecules. Activation of cPKA can phosphorylate a broad range of substrates that regulate various metabolic pathways, gene expression, and affect memory functions etc. The stimulation of adenylate cyclases starts with interactions with GPCRs mediated signals initiated by Gs and Gi heterotrimeric G-proteins. The interaction of GPCR agonist (eg. Interaction of isopreternol to beta2 receptors) catalyses the exchange of GDP to GTP that is bound to G proteins. The GTP binding reduces the affinity of Gs'N to other GTP binding proteins and Gs-GTP complex stimulate the adenylate cyclase. In last several years, new members of particulate and soluble adenylate cyclase family have been identified and significant progress is made in understanding of the molecular mechanisms that underlie the regulation of these families of enzymes.
Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
Catalog Number: (89367-400)

Supplier:  Genetex
Description:   The membrane-bound adenylyl cyclases (ACs) represent one of the major families of effector enzymes for G protein-coupled receptors (GPCRs). Using the high inter-species homology of mammalian AC isoforms, nine Adenylyl cyclase (AC) isoforms, encoded by separate genes, have been identified until today. Human adenylate cyclase genes comprise of 11 to 26 exons, which are distributed over 16 to 430kb. The expression profile of these 9 AC isoforms in a panel of 16 human tissues and in human embryonic kidney (HEK) cells have been demonstrated earlier. The cAMP synthesizing enzymes are found in two forms: cytosolic (soluble) and membrane-bound (particulate). Stimulation of adenylate cyclases produce cAMP form ATP in response to the activation of GPCRs by various hormones, neurotransmitters and other regulatory molecules. cAMP, in subsequent steps down the signal transduction pathway, can stimulate cAMP-dependent protein kinase A (cPKA), and several other target molecules. Activation of cPKA can phosphorylate a broad range of substrates that regulate various metabolic pathways, gene expression, and affect memory functions etc. The stimulation of adenylate cyclases starts with interactions with GPCRs mediated signals initiated by Gs and Gi heterotrimeric G-proteins. The interaction of GPCR agonist (eg. Interaction of isopreternol to beta2 receptors) catalyses the exchange of GDP to GTP that is bound to G proteins. The GTP binding reduces the affinity of Gs'N to other GTP binding proteins and Gs-GTP complex stimulate the adenylate cyclase. In last several years, new members of particulate and soluble adenylate cyclase family have been identified and significant progress is made in understanding of the molecular mechanisms that underlie the regulation of these families of enzymes.

Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.

Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.

Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.

Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.

Supplier:  Bioss
Description:   Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome. May play a role in endoplasmic reticulum-associated degradation (ERAD) of misfolded glycoproteins by association with PNGase and delivering deglycosylated proteins to the proteasome. Involved in global genome nucleotide excision repair (GG-NER) by acting as component of the XPC complex. Cooperatively with CETN2 appears to stabilize XPC. May protect XPC from proteasomal degradation. The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex. The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs. The orientation of XPC complex binding appears to be crucial for inducing a productive NER. XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery. Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair. In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts.
Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at 1-800-932-5000.
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at Regulatory_Affairs@vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at 1-800-932-5000.
7,969 - 7,984  of 138,529